Collective Adaptive Systems often consist of many heterogeneous components typically organised in groups. These entities interact with each other by adapting their behaviour to pursue individual or collective goals. In these systems, the distribution of these entities determines a space that can be either physical or logical. The former is defined in terms of a physical relation among components. The latter depends on logical relations, such as being part of the same group. In this context, specification and verification of spatial properties play a fundamental role in supporting the design of systems and predicting their behaviour. \changedtext{For this reason, different tools and techniques have been proposed to specify and verify the properties of space, mainly described as graphs. Therefore, the approaches generally use model spatial relations to describe a form of proximity among pairs of entities. Unfortunately, these graph-based models do not permit considering relations among more than two entities that may arise when one is interested in describing aspects of space by involving \emph{interactions among groups of entities. In this work, we propose a spatial logic interpreted on \emph{simplicial complexes}. These are topological objects, able to represent surfaces and volumes efficiently that generalise graphs with higher-order edges. We discuss how the satisfaction of logical formulas can be verified by a correct and complete model checking algorithm, which is linear to the dimension of the simplicial complex and logical formula. The expressiveness of the proposed logic is studied in terms of the spatial variants of classical \emph{bisimulation} and \emph{branching bisimulation} relations defined over simplicial complexes.
翻译:集体适应系统通常由不同组别通常组织的许多不同组成部分组成 。 这些实体彼此互动, 调整行为以追求个人或集体目标 。 在这些系统中, 这些实体的分布决定了一个空间空间, 可以是物理的, 也可以是逻辑的。 前者的定义是各组成部分之间的物理关系。 后者取决于逻辑关系, 如属于同一组别的一部分。 在这方面, 空间属性的规格和校验在支持系统设计和预测其行为方面起着根本作用 。 \ 变换文本 { 由于这个原因, 提出了不同的工具和技术来指定和验证空间的属性, 主要是图表 。 因此, 这些方法通常使用模型空间关系来描述实体对对对对对口之间的接近形式。 不幸的是, 这些基于图形的模型不允许考虑两个实体之间的关系, 当人们有兴趣描述空间的方方面时, 使用\ emph{ 互交织关系 来支持系统设计和预测它们的行为 。 在这项工作中, 我们建议用一个空间逻辑逻辑逻辑的逻辑解释来解释 。 这些是表层的物体, 能够代表表面和数量 的逻辑的精确度, 我们通过直观的平面来对公式的精度进行精确的精度 。