We introduce neural dual contouring (NDC), a new data-driven approach to mesh reconstruction based on dual contouring (DC). Like traditional DC, it produces exactly one vertex per grid cell and one quad for each grid edge intersection, a natural and efficient structure for reproducing sharp features. However, rather than computing vertex locations and edge crossings with hand-crafted functions that depend directly on difficult-to-obtain surface gradients, NDC uses a neural network to predict them. As a result, NDC can be trained to produce meshes from signed or unsigned distance fields, binary voxel grids, or point clouds (with or without normals); and it can produce open surfaces in cases where the input represents a sheet or partial surface. During experiments with five prominent datasets, we find that NDC, when trained on one of the datasets, generalizes well to the others. Furthermore, NDC provides better surface reconstruction accuracy, feature preservation, output complexity, triangle quality, and inference time in comparison to previous learned (e.g., neural marching cubes, convolutional occupancy networks) and traditional (e.g., Poisson) methods. Code and data are available at https://github.com/czq142857/NDC.
翻译:我们引入了神经双重连接(NDC),这是一种基于双重连接(DC)的以数据驱动的网状重建新方法。与传统的DC一样,它每电网格格格中产生一个螺旋,每个网格边缘十字路口产生一个螺旋体,每个网格边缘十字路口产生一个四角体,这是产生尖锐特征的自然而有效的结构。然而,我们不是直接依靠难以观测的地表梯度来计算顶端位置和边缘交叉点,而是利用直接依赖于难以观测的地表梯度的手工制作功能,NDC使用神经网络进行预测。因此,NDC可以接受培训,以便从已签名或未签名的距离字段、二进制毒网或点云(无论正常与否)中产生中间线;在输入代表板块或部分表面的情况下,它可以产生开阔的表面。在对五个突出数据集进行实验时,我们发现NDC在对一个数据集进行训练时,对其它数据集进行一般化。此外,NDC提供更好的地表重建准确性保存、产出复杂性、三角质量,并与以往所学到的时间(e.g.、神经进进制制/立/CDC)是可用的数据占用网络。