Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts.
翻译:新发现通常被称作与常规性学习模式不相符的观测的区别。尽管新发现探测器在不同的应用环境中很重要,但由于新事物的不可预测性和在培训过程中无法进入,设计新探测器是完全复杂的,因为新事物的不可预测性及其在培训过程中无法进入,这些因素暴露了问题不受监督的性质。在我们的提案中,我们设计了一个总的框架,在这种框架内,我们装备了一个深自动编码器,配有一个光度密度估计器,通过自动递减程序了解其潜在表现的概率分布。我们的建议表明,一个最大的可能性目标,在重建正常样品的同时加以优化,有效地作为手头任务的一种固定装置,通过尽量减少潜在载体分布范围的差异。除了提供非常笼统的配方外,我们关于公开提供的数据集模型的广泛实验,如果与单级和视频异常检测环境中的先进方法相比较,则可以提供平行或优异的性能。我们的建议与以前的工作不同,没有就新事物的性质作出任何假设,使我们的工作能够很容易地适用于不同的环境。