In Statistical Relational Artificial Intelligence, a branch of AI and machine learning which combines the logical and statistical schools of AI, one uses the concept {\em para\-metrized probabilistic graphical model (PPGM)} to model (conditional) dependencies between random variables and to make probabilistic inferences about events on a space of "possible worlds". The set of possible worlds with underlying domain $D$ (a set of objects) can be represented by the set $\mathbf{W}_D$ of all first-order structures (for a suitable signature) with domain $D$. Using a formal logic we can describe events on $\mathbf{W}_D$. By combining a logic and a PPGM we can also define a probability distribution $\mathbb{P}_D$ on $\mathbf{W}_D$ and use it to compute the probability of an event. We consider a logic, denoted $PLA$, with truth values in the unit interval, which uses aggregation functions, such as arithmetic mean, geometric mean, maximum and minimum instead of quantifiers. However we face the problem of computational efficiency and this problem is an obstacle to the wider use of methods from Statistical Relational AI in practical applications. We address this problem by proving that the described probability will, under certain assumptions on the PPGM and the sentence $\varphi$, converge as the size of $D$ tends to infinity. The convergence result is obtained by showing that every formula $\varphi(x_1, \ldots, x_k)$ which contains only "admissible" aggregation functions (e.g. arithmetic and geometric mean, max and min) is asymptotically equivalent to a formula $\psi(x_1, \ldots, x_k)$ without aggregation functions.


翻译:有向图模型中部分连续聚合函数的渐进消除 翻译后的摘要: 在统计关系人工智能中,一种将AI和机器学习的逻辑和统计学派别相结合的分支,使用参数化概率图模型(PPGM)来模拟(条件)随机变量之间的依存关系并对“可能的世界”上的事件进行概率推断。带有基础域D(一组对象)的可能世界集合可以用所有具有域D的第一阶结构(对于适当的签名)的集合Ω_D来表示。使用一个形式逻辑,我们可以描述对Ω_D上的事件。通过组合逻辑和PPGM,我们还可以定义Ω_D上的概率分布P_D,并用它来计算一个事件的概率。我们考虑一个逻辑,记为PLA,其真值在单位区间内,使用聚合函数(例如算术平均数、几何平均数、最大值和最小值)代替量词。然而,我们面临计算效率问题,这个问题是将统计关系AI中的方法更广泛地应用于实际应用的障碍。我们通过证明在对PPGM和句子Φ的某些假设下,所述概率将在D的大小趋于无穷大时收敛。通过展示每个仅包含“可接受”聚合函数(如算术平均数、几何平均数、最大值和最小值)的公式Φ(x1,……,xk)都是渐进等价于一个没有聚合函数的公式ψ(x1,……,xk)来获得收敛结果。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
46+阅读 · 2022年2月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
16+阅读 · 2022年5月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员