Locally Linear Embedding (LLE) is a nonlinear spectral dimensionality reduction and manifold learning method. It has two main steps which are linear reconstruction and linear embedding of points in the input space and embedding space, respectively. In this work, we propose two novel generative versions of LLE, named Generative LLE (GLLE), whose linear reconstruction steps are stochastic rather than deterministic. GLLE assumes that every data point is caused by its linear reconstruction weights as latent factors. The proposed GLLE algorithms can generate various LLE embeddings stochastically while all the generated embeddings relate to the original LLE embedding. We propose two versions for stochastic linear reconstruction, one using expectation maximization and another with direct sampling from a derived distribution by optimization. The proposed GLLE methods are closely related to and inspired by variational inference, factor analysis, and probabilistic principal component analysis. Our simulations show that the proposed GLLE methods work effectively in unfolding and generating submanifolds of data.


翻译:局部线性嵌入( LLE) 是一种非线性光谱维度递减和多重学习方法。 它有两个主要步骤, 分别是线性重建以及输入空间和嵌入空间中点的线性嵌入。 在这项工作中, 我们建议了两种新型的LLE 基因化版本, 叫做“ 引力化 LLE ” ( GLLE ), 其线性重建步骤是随机的, 而不是确定性的。 GLLE 假设每个数据点都是由线性重建重量作为潜在因素造成的。 提议的GLLE 算法可以产生各种LLE 嵌入式, 而所有生成的嵌入式都与原LLE 嵌入有关。 我们建议了两种版本的线性线性重建, 一种是利用预期最大化, 另一种是利用通过优化的分布直接抽样。 拟议的GLLE 方法与变化的推断、 要素分析以及概率性主要组成部分分析密切相关并受到启发。 我们的模拟表明, 拟议的GLE 方法在数据演化和生成子上有效发挥作用。

0
下载
关闭预览

相关内容

Locally linear embedding(LLE) 是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。
专知会员服务
25+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员