Network embedding has become a hot research topic recently which can provide low-dimensional feature representations for many machine learning applications. Current work focuses on either (1) whether the embedding is designed as an unsupervised learning task by explicitly preserving the structural connectivity in the network, or (2) whether the embedding is a by-product during the supervised learning of a specific discriminative task in a deep neural network. In this paper, we focus on bridging the gap of the two lines of the research. We propose to adapt the Generative Adversarial model to perform network embedding, in which the generator is trying to generate vertex pairs, while the discriminator tries to distinguish the generated vertex pairs from real connections (edges) in the network. Wasserstein-1 distance is adopted to train the generator to gain better stability. We develop three variations of models, including GANE which applies cosine similarity, GANE-O1 which preserves the first-order proximity, and GANE-O2 which tries to preserves the second-order proximity of the network in the low-dimensional embedded vector space. We later prove that GANE-O2 has the same objective function as GANE-O1 when negative sampling is applied to simplify the training process in GANE-O2. Experiments with real-world network datasets demonstrate that our models constantly outperform state-of-the-art solutions with significant improvements on precision in link prediction, as well as on visualizations and accuracy in clustering tasks.


翻译:最近,网络嵌入已成为一个热点研究课题,可为许多机器学习应用提供低维特征显示。当前工作的重点是:(1) 嵌入是设计成一个未经监督的学习任务,明确维护网络的结构连接,还是(2) 嵌入是监督地学习深层神经网络中特定歧视任务过程中的副产品。在本文中,我们侧重于缩小研究两行之间的距离。我们提议调整“基因反反向模型”,以进行网络嵌入,其中发电机试图生成顶端对配,而歧视者试图将生成的顶端对配与网络中的实际连接(边缘)区分开来。Wasserstein-1距离被用来培训发电机,以获得更好的稳定性。我们开发了三种模型的变异式,包括应用直线相似的GANE、保持一级距离的GANE-O1和试图保持网络在低维度嵌入矢量空间中保持网络第二阶级近距离的精确度连接度,同时,我们后来证明GANE-O2在模拟中与GANE-O2的模拟模型中将常规数据简化了我们的实际数据模式。

4
下载
关闭预览

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员