Locally linear embedding(LLE) 是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。

最新内容

Non-linear dimensionality reduction can be performed by \textit{manifold learning} approaches, such as Stochastic Neighbour Embedding (SNE), Locally Linear Embedding (LLE) and Isometric Feature Mapping (ISOMAP). These methods aim to produce two or three latent embeddings, primarily to visualise the data in intelligible representations. This manuscript proposes extensions of Student's t-distributed SNE (t-SNE), LLE and ISOMAP, for dimensionality reduction and visualisation of multi-view data. Multi-view data refers to multiple types of data generated from the same samples. The proposed multi-view approaches provide more comprehensible projections of the samples compared to the ones obtained by visualising each data-view separately. Commonly visualisation is used for identifying underlying patterns within the samples. By incorporating the obtained low-dimensional embeddings from the multi-view manifold approaches into the K-means clustering algorithm, it is shown that clusters of the samples are accurately identified. Through the analysis of real and synthetic data the proposed multi-SNE approach is found to have the best performance. We further illustrate the applicability of the multi-SNE approach for the analysis of multi-omics single-cell data, where the aim is to visualise and identify cell heterogeneity and cell types in biological tissues relevant to health and disease.

0
0
下载
预览

最新论文

Non-linear dimensionality reduction can be performed by \textit{manifold learning} approaches, such as Stochastic Neighbour Embedding (SNE), Locally Linear Embedding (LLE) and Isometric Feature Mapping (ISOMAP). These methods aim to produce two or three latent embeddings, primarily to visualise the data in intelligible representations. This manuscript proposes extensions of Student's t-distributed SNE (t-SNE), LLE and ISOMAP, for dimensionality reduction and visualisation of multi-view data. Multi-view data refers to multiple types of data generated from the same samples. The proposed multi-view approaches provide more comprehensible projections of the samples compared to the ones obtained by visualising each data-view separately. Commonly visualisation is used for identifying underlying patterns within the samples. By incorporating the obtained low-dimensional embeddings from the multi-view manifold approaches into the K-means clustering algorithm, it is shown that clusters of the samples are accurately identified. Through the analysis of real and synthetic data the proposed multi-SNE approach is found to have the best performance. We further illustrate the applicability of the multi-SNE approach for the analysis of multi-omics single-cell data, where the aim is to visualise and identify cell heterogeneity and cell types in biological tissues relevant to health and disease.

0
0
下载
预览
父主题
Top