Passing-Bablok regression is a standard tool for method and assay comparison studies thanks to its place in industry guidelines such as CLSI. Unfortunately, its computational cost is high as a naive approach requires O(n2) time. This makes it impossible to compute the Passing-Bablok regression estimator on large datasets. Additionally, even on smaller datasets it can be difficult to perform bootstrap-based inference. We introduce the first quasilinear time algorithm for the equivariant Passing-Bablok estimator. In contrast to the naive algorithm, our algorithm runs in O(n log(n)) expected time using O(n) space, allowing for its application to much larger data sets. Additionally, we introduce a fast estimator for the variance of the Passing-Bablok slope and discuss statistical inference based on bootstrap and this variance estimate. Finally, we propose a diagnostic plot to identify influential points in Passing-Bablok regression. The superior performance of the proposed methods is illustrated on real data examples of clinical method comparison studies.
翻译:Passing-Bablok 回归是方法和分析比较研究的标准工具,因为它在CLSI等行业准则中的位置。 不幸的是,它的计算成本很高,因为一种天真的方法需要O(n2)时间。 这使得无法在大型数据集上计算 passing- Babablok 回归估计值。 此外, 即使是在较小的数据集上, 也很难进行以靴子陷阱为基础的推断。 我们为等式通过- Bablok 估测器引入了第一个准线性时间算法。 与天真的算法不同, 我们的算法在O(n) 空间运行的预期时间, 允许将其应用到大得多的数据集。 此外, 我们采用快速估计器来计算通过- Bablok 斜度的差异, 并讨论基于靴子陷阱和这一差异估计的统计推论。 最后, 我们提出一个诊断图, 以确定通过- Bablok 回归的有影响力的点。 与天算法相反, 我们所提议方法的优性表现是在临床方法比较研究的实际数据示例中说明。