In this article, we derive and compare methods to derive \textit{p}-values and sets of confidence intervals with strong control of the family-wise error rates and coverage for estimates of treatment effects in cluster randomised trials with multiple outcomes. There are few methods for \textit{p}-value corrections and deriving confidence intervals, limiting their application in this setting. We discuss the methods of Bonferroni, Holm, and Romano \& Wolf (2005) and adapt them to cluster randomised trial inference using permutation-based methods with different test statistics. We develop a novel search procedure for confidence set limits using permutation tests to produce a set of confidence intervals under each method of correction. We conduct a simulation-based study to compare family-wise error rates, coverage of confidence sets, and the efficiency of each procedure in comparison to no correction using both model-based standard errors and permutation tests. We show that the Romano-Wolf type procedure has nominal error rates and coverage under non-independent correlation structures and is more efficient than the other methods in a simulation-based study. We also compare results from the analysis of a real-world trial.
翻译:在本篇文章中,我们得出并比较得出\textit{p}值和信任间隔的方法,对家庭错差率进行严格控制,在集成随机试验中估计治疗效果的覆盖面有多重结果。没有多少方法可以进行\textit{p}值校正和得出信任间隔,限制在这种环境下的应用。我们讨论了Bonferroni、Holm和Romano ⁇ Wolf (2005年)的方法,并利用不同测试统计数据采用基于变异的方法,将其调整为集束随机试验推断。我们开发了一个新的信任限制搜索程序,使用调换测试,在每种纠正方法下产生一套信任间隔。我们进行了模拟研究,比较了基于家庭错率、信任套数的覆盖面以及每种程序的效率,而没有采用基于模型的标准错误和变异测试方法加以校正。我们发现,罗马-沃夫型程序在非独立关联结构下有象征性的错误率和覆盖面,比模拟研究中的其他方法更有效率。我们还比较了真实世界试验分析的结果。