In this article, we derive and compare methods to derive \textit{p}-values and sets of confidence intervals with strong control of the family-wise error rates and coverage for estimates of treatment effects in cluster randomised trials with multiple outcomes. There are few methods for \textit{p}-value corrections and deriving confidence intervals, limiting their application in this setting. We discuss the methods of Bonferroni, Holm, and Romano \& Wolf (2005) and adapt them to cluster randomised trial inference using permutation-based methods with different test statistics. We develop a novel search procedure for confidence set limits using permutation tests to produce a set of confidence intervals under each method of correction. We conduct a simulation-based study to compare family-wise error rates, coverage of confidence sets, and the efficiency of each procedure in comparison to no correction using both model-based standard errors and permutation tests. We show that the Romano-Wolf type procedure has nominal error rates and coverage under non-independent correlation structures and is more efficient than the other methods in a simulation-based study. We also compare results from the analysis of a real-world trial.


翻译:在本篇文章中,我们得出并比较得出\textit{p}值和信任间隔的方法,对家庭错差率进行严格控制,在集成随机试验中估计治疗效果的覆盖面有多重结果。没有多少方法可以进行\textit{p}值校正和得出信任间隔,限制在这种环境下的应用。我们讨论了Bonferroni、Holm和Romano ⁇ Wolf (2005年)的方法,并利用不同测试统计数据采用基于变异的方法,将其调整为集束随机试验推断。我们开发了一个新的信任限制搜索程序,使用调换测试,在每种纠正方法下产生一套信任间隔。我们进行了模拟研究,比较了基于家庭错率、信任套数的覆盖面以及每种程序的效率,而没有采用基于模型的标准错误和变异测试方法加以校正。我们发现,罗马-沃夫型程序在非独立关联结构下有象征性的错误率和覆盖面,比模拟研究中的其他方法更有效率。我们还比较了真实世界试验分析的结果。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员