In this work, the use of t-SNE is proposed to embed 3D point clouds of plants into 2D space for plant characterization. It is demonstrated that t-SNE operates as a practical tool to flatten and visualize a complete 3D plant model in 2D space. The perplexity parameter of t-SNE allows 2D rendering of plant structures at various organizational levels. Aside from the promise of serving as a visualization tool for plant scientists, t-SNE also provides a gateway for processing 3D point clouds of plants using their embedded counterparts in 2D. In this paper, simple methods were proposed to perform semantic segmentation and instance segmentation via grouping the embedded 2D points. The evaluation of these methods on a public 3D plant data set conveys the potential of t-SNE for enabling of 2D implementation of various steps involved in automatic 3D phenotyping pipelines.
翻译:在这项工作中,建议使用t-SNE将3D点的植物云嵌入2D空间,以便进行工厂特征鉴定,这证明t-SNE是一个实用工具,用来在2D空间平整和直观一个完整的3D工厂模型。t-SNE的复杂参数使各个组织层次的工厂结构能够形成2D结构。T-SNE除了作为植物科学家可视化工具的许诺之外,T-SNE还为利用2D内嵌的对口单位处理3D点的植物云提供了一个通道。本文建议采用简单的方法,通过将嵌入的2D点分组来进行语义分解和实例分解。在公共的3D工厂数据集上对这些方法进行评估,表明t-SNE有可能使自动3D口哨管道所涉及的各种步骤得以实施2D。