LiDAR sensors are a powerful tool for robot simultaneous localization and mapping (SLAM) in unknown environments, but the raw point clouds they produce are dense, computationally expensive to store, and unsuited for direct use by downstream autonomy tasks, such as motion planning. For integration with motion planning, it is desirable for SLAM pipelines to generate lightweight geometric map representations. Such representations are also particularly well-suited for man-made environments, which can often be viewed as a so-called "Manhattan world" built on a Cartesian grid. In this work we present a 3D LiDAR SLAM algorithm for Manhattan world environments which extracts planar features from point clouds to achieve lightweight, real-time localization and mapping. Our approach generates plane-based maps which occupy significantly less memory than their point cloud equivalents, and are suited towards fast collision checking for motion planning. By leveraging the Manhattan world assumption, we target extraction of orthogonal planes to generate maps which are more structured and organized than those of existing plane-based LiDAR SLAM approaches. We demonstrate our approach in the high-fidelity AirSim simulator and in real-world experiments with a ground rover equipped with a Velodyne LiDAR. For both cases, we are able to generate high quality maps and trajectory estimates at a rate matching the sensor rate of 10 Hz.


翻译:LiDAR传感器是机器人在未知环境中同时定位和绘图(SLAM)的强大工具,但是它们产生的原始点云密度大,在计算上昂贵,储存费用昂贵,不适合下游自主任务直接使用,例如运动规划。为了与运动规划相结合,SLAM管道最好能产生轻度的几何地图表示,这种表示也特别适合人造环境,人们往往可以把这种表示看成是建在Cartesian网格上的所谓“曼哈顿世界”。在这项工作中,我们为曼哈顿世界环境提出了一个3D LiDAR SLAM算法,从点云中提取规划功能,以实现轻度、实时本地化和绘图。我们的方法产生基于飞机的地图,其记忆度大大低于其点云等值,适合快速检查运动规划。通过利用曼哈顿世界的假设,我们的目标是提取或多层飞机,绘制比现有基于飞机的LDAR SLMM 方法更结构化和结构更完善的地图。我们展示了我们在高空间-AR质量实验中所使用的方法,在高空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Dense Voxel Fusion for 3D Object Detection
Arxiv
0+阅读 · 2022年10月27日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员