项目名称: 动态复杂未知环境下的移动机器人实时SLAM算法研究
项目编号: No.61305109
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 张亮
作者单位: 西安电子科技大学
项目金额: 27万元
中文摘要: 本项目针对动态、复杂和未知环境下,单独利用视觉传感器进行移动机器人SLAM过程中地图估计的收敛性和实时性问题展开研究。对动态复杂未知环境下特征点的鲁棒性表示,精 确匹配算法,地图表示方法以及生成地图的收敛性进行了深入研究。具体包括:视觉特征点在深度、反向深度表示下的不确定性研究,基于检测视差角的特征点表示研究,二值特征描述子的表示方法研究;基于概率RANSAC算法和二值特征描述子相结合的特征点匹配算法研究,基于距离网格地图的表示和更新方法研究。在此基础上,研究单独利用视觉传感器构建全局地图和路径估计的图模型,利用流形方法进行全局地图的优化。本项目的研究尤其针对动态、复杂和未知环境,强调移动机器生成地图的收敛性和实时性以及对动态环境适应的鲁棒性,本项目的研究对移动机器人单独利用视觉传感器进行高层次任务的实现具有重要的理论价值,对低成本移动机器人的研究具有积极的推动作用。
中文关键词: 同步定位与地图重建;动态环境;全局优化;像素分割;图像增强
英文摘要: This project focus on the robot's simultaneous mapping and localization (SLAM) problems, such as the consistency of the map and its real-time problem, in the dynamic, complex, and unknown environments when only the vision sensor is used.In this project, we do an indepth research about the robustness of the feature description,the exactly duplicated feature detection and the map representation. The research consists of several aspects, such as the feature uncertainties research on the vision feature point in depth and inverse depth presentation, the research on the expression of the feature point with the angle difference for the same feature, the binary description for the feature, the study of the algorithms of the same feature detection which uses the probabilistic RANSAC(RANdom SAmple Consensus) algorithms and the binary feature description's attribution, and the analysis of the distance grid mapping's representation and the map's updating methods. On this basis the graphic model is used to do the optimization of the global mapping and the robot's path estimation. Besides, the robot position drift and error estimation is improved by the loop detection in the graphic model. Meanwhile, the manifold method is used to optimize the global map. Altogether, this project will propose an effective method, which can re
英文关键词: SLAM;dynamic environment;global optimization;pixel segmentation;image enhacing