Spatio-temporal kriging is an important problem in web and social applications, such as Web or Internet of Things, where things (e.g., sensors) connected into a web often come with spatial and temporal properties. It aims to infer knowledge for (the things at) unobserved locations using the data from (the things at) observed locations during a given time period of interest. This problem essentially requires \emph{inductive learning}. Once trained, the model should be able to perform kriging for different locations including newly given ones, without retraining. However, it is challenging to perform accurate kriging results because of the heterogeneous spatial relations and diverse temporal patterns. In this paper, we propose a novel inductive graph representation learning model for spatio-temporal kriging. We first encode heterogeneous spatial relations between the unobserved and observed locations by their spatial proximity, functional similarity, and transition probability. Based on each relation, we accurately aggregate the information of most correlated observed locations to produce inductive representations for the unobserved locations, by jointly modeling their similarities and differences. Then, we design relation-aware gated recurrent unit (GRU) networks to adaptively capture the temporal correlations in the generated sequence representations for each relation. Finally, we propose a multi-relation attention mechanism to dynamically fuse the complex spatio-temporal information at different time steps from multiple relations to compute the kriging output. Experimental results on three real-world datasets show that our proposed model outperforms state-of-the-art methods consistently, and the advantage is more significant when there are fewer observed locations. Our code is available at https://github.com/zhengchuanpan/INCREASE.
翻译:在网络和社交应用中,如Web 或 Internet of Things, 连接到网络中的东西(例如传感器)往往具有空间和时间特性,这是网络和社会应用中的一个重要问题。它的目的是利用在特定时间段观测到的(事物)地点的数据,推断(事物)在特定时间段内观测到的未观测地点的知识(事物) 。 这个问题基本上需要\ emph{ 感应学习 。 一旦经过培训, 模型应能为不同地点, 包括新指定的地点, 而不经过再培训, 进行精确的调整。 然而, 由于空间关系和时间模式各异, 执行准确的调整效果是困难的。 在本文中,我们提出了一个新的缩略微图演示模型, 以显示在空间距离、 功能相似性和过渡概率上观测到的地点之间的不同空间关系。 我们随后设计了一个动态模型- 数据序列, 显示我们不断调整的图像- 结构- 显示我们不断变动的系统- 显示我们不断变动的系统- 系统- 显示我们不断变动的系统- 结构- 显示我们不断变动的系统- 结构- 显示我们所生成的系统- 的系统- 系统- 结构- 结构- 显示的系统- 结构- 显示我们所生成- 显示的系统- 系统- 结构- 显示的系统- 系统- 结构- 显示的系统- 显示的系统- 显示的系统- 显示的系统- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 结构- 显示- 显示- 系统- 显示- 显示在最后- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示- 显示