Spatial dependent data frequently occur in many fields such as spatial econometrics and epidemiology. To deal with the dependence of variables and estimate quantile-specific effects by covariates, spatial quantile autoregressive models (SQAR models) are introduced. Conventional quantile regression only focuses on the fitting models but ignores the examination of multiple conditional quantile functions, which provides a comprehensive view of the relationship between the response and covariates. Thus, it is necessary to study the different regression slopes at different quantiles, especially in situations where the quantile coefficients share some common feature. However, traditional Wald multiple tests not only increase the burden of computation but also bring greater FDR. In this paper, we transform the estimation and examination problem into a penalization problem, which estimates the parameters at different quantiles and identifies the interquantile commonality at the same time. To avoid the endogeneity caused by the spatial lag variables in SQAR models, we also introduce instrumental variables before estimation and propose two-stage estimation methods based on fused adaptive LASSO and fused adaptive sup-norm penalty approaches. The oracle properties of the proposed estimation methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to higher estimation efficiency than the traditional quantile regression.


翻译:空间计量和流行病学等许多领域都经常出现空间依赖数据。为了应对变量的依赖和以共变方式估计量化特有效应,引入了空间微量自动递减模型(SQAR模型)。常规微量回归仅侧重于适当模型,而忽略了对多种有条件微量函数的检查,这些功能提供了对反应和共变关系的全面了解。因此,有必要研究不同量化的不同回归坡,特别是在量化系数具有一些共同特征的情况下。然而,传统的沃尔德多重测试不仅增加了计算负担,而且还带来了更大的FDR。在本文件中,我们将估计和审查问题转化为一个惩罚问题,其中估计了不同量化参数的参数,并同时确定了多个有条件微量函数之间的共性。为避免SQAR模型中空间滞后变量造成的内分性,我们在估算之前还引入了一些工具变量,并提出了基于整合适应性LASSO和整合适应性峰值调整后两个阶段的估计方法。我们把估算和检查问题转换成一个惩罚性问题,即估算不同微量值参数的计算方法,其所拟议的数值是所展示的数值。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月14日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员