This paper deals with robust inference for parametric copula models. Estimation using Canonical Maximum Likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on the Maximum Mean Discrepancy (MMD) principle. We derive non-asymptotic oracle inequalities, consistency and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any assumption on the copula family, and can be applied in the presence of outliers or under misspecification. Moreover, in our MMD framework, the statistical inference of copula models for which there exists no density with respect to the Lebesgue measure on $[0,1]^d$, as the Marshall-Olkin copula, becomes feasible. A simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum likelihood estimation. An R package implementing the MMD estimator for copula models is available.
翻译:本文涉及对准焦炭模型的有力推论。 使用Canonical 最大可能性的估算可能不稳定, 特别是在外部线存在的情况下。 我们提议使用基于最大平均值差异原则的程序。 我们从中得出非无症状的甲骨文不平等、 一致性和无症状性常态。 特别是, 甲骨文不平等没有任何关于椰子系的假设, 并且可以在存在外部线或误差的情况下应用。 此外, 在我们的 MMD 框架中, 以马歇尔- 奥尔金干草为主的勒贝斯格措施没有密度的( $10, 1, ⁇ d$ ) 模型的统计推论是可行的。 模拟研究表明了我们新程序的稳健性, 特别是相对于伪最大的可能性估计值。 一个实施 MID Copula 模型的R 软件包可以使用 MID 估计 。