Clustering time series into similar groups can improve models by combining information across like time series. While there is a well developed body of literature for clustering of time series, these approaches tend to generate clusters independently of model training which can lead to poor model fit. We propose a novel distributed approach that simultaneously clusters and fits autoregression models for groups of similar individuals. We apply a Wishart mixture model so as to cluster individuals while modeling the corresponding autocovariance matrices at the same time. The fitted Wishart scale matrices map to cluster-level autoregressive coefficients through the Yule-Walker equations, fitting robust parsimonious autoregressive mixture models. This approach is able to discern differences in underlying autocorrelation variation of time series in settings with large heterogeneous datasets. We prove consistency of our cluster membership estimator, asymptotic distributions of coefficients and compare our approach against competing methods through simulation as well as by fitting a COVID-19 forecast model.
翻译:将时间序列分组为相似群体可以通过将类似时间序列的信息组合在一起来改进模型。 虽然对于时间序列的分组而言,有一套完善的文献资料,但这些方法往往产生群集,而与示范培训不相干,可能导致模型不完善。 我们建议采用新颖的分布式方法,同时为相似个人群集和自动回归模式。 我们采用Wishart混合模型,以便群集个人,同时对相应的自动变量矩阵进行建模。 Wishart 比例矩阵图,通过Yule-Walker方程式对群集级自动递增系数进行了配配对,并安装了强健健健的相似的自动递增混合模型。 这种方法能够辨别在大型多变数据集环境中的时间序列内在自动关系变化方面的差异。 我们证明,我们的群集成员估计数据是一致的,对系数的零位分布,并通过模拟和配置COVID-19预测模型来比较我们的方法与竞争的方法。