Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects in the presence of high-dimensional covariates. Our estimator combines a $\ell_1$-penalized regression adjustment with a quantile-specific bias correction scheme based on quantile regression rank scores. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to a Gaussian process. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer's disease patients who participated in the UK Biobank study.
翻译:在观测研究中,了解治疗效果的异质性对于许多科学领域都具有非常重要的实际意义。量回归为模拟这种异质性提供了一个自然框架。在本文中,我们提出了在高维共变情况下对多种孔处理效应进行推断的新方法。我们的估测器将一个$_1美元的基本回归调整与基于量化回归等级分的量化特定偏差纠正方案结合起来。我们全面研究了这个估测器的理论特性,包括不同孔处理效应进程与高斯进程不协调的情况。我们通过蒙特卡洛实验和一个经验性例子说明了我们的做法的有限抽样表现,这些例子涉及在降低参加英国生物银行研究的阿尔茨海默氏病患者的低密度脂质蛋白胆固醇水平方面,采用统计学用来降低低密度脂质脂质化胆固醇水平的差别效应。