This work is motivated by personalized digital twins based on observations and physical models for treatment and prevention of Hypertension. The models commonly used are simplification of the real process and the aim is to make inference about physically interpretable parameters. To account for model discrepancy we propose to set up the estimation problem in a Bayesian calibration framework. This naturally solves the inverse problem accounting for and quantifying the uncertainty in the model formulation, in the parameter estimates and predictions. We focus on the inverse problem, i.e. to estimate the physical parameters given observations. The models we consider are the two and three parameters Windkessel models (WK2 and WK3). These models simulate the blood pressure waveform given the blood inflow and a set of physically interpretable calibration parameters. The third parameter in WK3 function as a tuning parameter. The WK2 model offers physical interpretable parameters and therefore we adopt it as a computer model choice in a Bayesian calibration formulation. In a synthetic simulation study, we simulate noisy data from the WK3 model. We estimate the model parameters using conventional methods, i.e. least squares optimization and through the Bayesian calibration framework. It is demonstrated that our formulation can reconstruct the blood pressure waveform of the complex model, but most importantly can learn the parameters according to known mathematical connections between the two models. We also successfully apply this formulation to a real case study, where data was obtained from a pilot randomized controlled trial study. Our approach is successful for both the simulation study and the real cases.
翻译:这项工作是由基于观测和物理模型的个性化数字双胞胎驱动的,基于超强处理和预防的观察和物理模型。通常使用的模式是简化真实过程,目的是对物理解释参数进行推断。为了说明模型差异,我们提议在巴伊西亚校准框架中设置估算问题。这自然解决了计算模型的不确定性的反向问题,并在参数估计和预测中量化模型的不确定性。我们侧重于反向问题,即估计物理参数。我们考虑的模型是两个和三个参数Windkessel模型(WK2和WK3)。我们考虑的模型是Winkssel模型(WK3和WK3),这些模型模拟血液压力波变形模型,考虑到血液流入和一套物理解释校准校准参数。WK3中的第三个参数作为调校准参数。WK2模型提供了物理解释参数,因此我们在Bayesian校准公式中采用计算机模型选择。我们从WK3模型中获取的热度数据。我们用常规方法来估计模型,即,根据血液流流流流流和物理校准模型的模型进行,我们所了解的模型的模型的模型的校准,我们通过Basim 的校准模型的校准模型可以成功的校准模型的校准模型的校准,我们所了解的校准的模型的校正的校准的校准的校准的校正的校正和校正的校正的校正的校正的模型的模型可以成功。