We examine using data from multiple sensing modes, i.e., accelerometry and global navigation satellite system (GNSS), for classifying animal behavior. We extract three new features from the GNSS data, namely, the distance from the water point, median speed, and median estimated horizontal position error. We consider two approaches for combining the information available from the accelerometry and GNSS data. The first approach is based on concatenating the features extracted from both sensor data and feeding the concatenated feature vector into a multi-layer perceptron (MLP) classifier. The second approach is based on fusing the posterior probabilities predicted by two MLP classifiers each taking the features extracted from the data of one sensor as input. We evaluate the performance of the developed multi-modal animal behavior classification algorithms using two real-world datasets collected via smart cattle collar and ear tags. The leave-one-animal-out cross-validation results show that both approaches improve the classification performance appreciably compared with using the data from only one sensing mode, in particular, for the infrequent but important behaviors of walking and drinking. The algorithms developed based on both approaches require rather small computational and memory resources hence are suitable for implementation on embedded systems of our collar and ear tags. However, the multi-modal animal behavior classification algorithm based on posterior probability fusion is preferable to the one based on feature concatenation as it delivers better classification accuracy, has less computational and memory complexity, is more robust to sensor data failure, and enjoys better modularity.
翻译:我们使用多种感测模式的数据,即环境测量和全球导航卫星系统的数据,对动物行为进行分类。我们从全球导航卫星系统数据中提取三个新特征,即与水点的距离、中位速度和水平位置估计中位误差。我们考虑采用两种方法,将从加速度测量和全球导航卫星系统数据中获得的信息合并起来。第一种方法是将从传感器数据中提取的特征混为一体,并将连接的特性矢量矢量输入多层透视器(MLP)分类。第二种方法是利用两个MLP分类者预测的远地点概率来对动物行为进行分类。我们从两个传感器数据中提取的外在距离、中位速度和中位水平估计水平差三个新特征。我们采用两种方法,将从传感器数据中提取的特征进行整合,将连接到连接到一个多层透分级(MLP)分类(MLP)分类(MLP)分类(GNS)分类(GNS)分类(GNS)分类。第二种方法是利用两个MLP分类者预测的远地点概率,分别从一个传感器数据中位数据中位,从一个传感器提取的远处测测测测测测测测测测测,将多位置。我们所测测算的多位算算算算算的多种算算算算算算算算算法的两种方法的功能的性是更精确性。我们用一个的内位数方法,用来测算法,用来测算法,用来测算方法,用来测算法,用来测测算法,用来测算方法,用来测测算方法,用来测算法和测算法,用来测算算法,用来测算算法,用来测算。 以一个比测算方法,用来测算方法,用来测算方法, 以一个比测算方法,用来测算方法以一个比测算方法, 和测算方法, 和测测算方法,用来测算方法,以一种测算方法,比测算方法比测算法方法,用来测算。