If a graph $G$ can be represented by means of paths on a grid, such that each vertex of $G$ corresponds to one path on the grid and two vertices of $G$ are adjacent if and only if the corresponding paths share a grid edge, then this graph is called EPG and the representation is called EPG representation. A $k$-bend EPG representation is an EPG representation in which each path has at most $k$ bends. The class of all graphs that have a $k$-bend EPG representation is denoted by $B_k$. $B_\ell^m$ is the class of all graphs that have a monotonic $\ell$-bend EPG representation, i.e. an $\ell$-bend EPG representation, where each path is ascending in both columns and rows. It is trivial that $B^m_k\subseteq B_k$ for all $k$. Moreover, it is known that $B^m_k\subsetneqq B_k$, for $k=1$. By investigating the $B_k$-membership and the $B^m_k$-membership of complete bipartite graphs we prove that the inclusion is also proper for $k\in \{2,3,5\}$ and for $k\geqslant 7$. In particular, we derive necessary conditions for this membership that have to be fulfilled by $m$, $n$ and $k$, where $m$ and $n$ are the number of vertices on the two partition classes of the bipartite graph. We conjecture that $B_{k}^{m} \subsetneqq B_{k}$ holds also for $k\in \{4,6\}$. Furthermore, we show that $B_k \not\subseteq B_{2k-9}^m$ holds for all $k\geqslant 5$. This implies that restricting the shape of the paths can lead to a significant increase of the number of bends needed in an EPG representation. So far no bounds on the amount of that increase were known. We prove that $B_1 \subseteq B_3^m$ holds, providing the first result of this kind.


翻译:如果一个图形 $2 G$ 可以通过网格上的路径表示 $2 美元。 那么每个G$ 的顶点对应在网格上的一条路径 $_ G$ 美元 。 $_ 美元 美元 和两个 G$ 的顶点是相邻的, 如果相应的路径共享一个网格边缘, 那么这个图形被称为 EPG, 其代表被称为 EPG 。 一个 $k 美元 的顶点代表是一个 EPG 代表 。 每个路径都以美元为最多弯。 所有路径中, 美元为美元 美元 。 美元 美元 美元 美元, 美元 美元 美元 。 美元 美元 美元 美元 的顶点是所有图表, 美元 美元 的顶点代表 。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
45+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月2日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
45+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员