The process of learning a manipulation task depends strongly on the action space used for exploration: posed in the incorrect action space, solving a task with reinforcement learning can be drastically inefficient. Additionally, similar tasks or instances of the same task family impose latent manifold constraints on the most effective action space: the task family can be best solved with actions in a manifold of the entire action space of the robot. Combining these insights we present LASER, a method to learn latent action spaces for efficient reinforcement learning. LASER factorizes the learning problem into two sub-problems, namely action space learning and policy learning in the new action space. It leverages data from similar manipulation task instances, either from an offline expert or online during policy learning, and learns from these trajectories a mapping from the original to a latent action space. LASER is trained as a variational encoder-decoder model to map raw actions into a disentangled latent action space while maintaining action reconstruction and latent space dynamic consistency. We evaluate LASER on two contact-rich robotic tasks in simulation, and analyze the benefit of policy learning in the generated latent action space. We show improved sample efficiency compared to the original action space from better alignment of the action space to the task space, as we observe with visualizations of the learned action space manifold. Additional details: https://pair.toronto.edu/laser


翻译:学习操纵任务的过程在很大程度上取决于用于探索的行动空间:在不正确的行动空间中提出,解决强化学习的任务可能非常低效。此外,类似的任务或同一任务组的类似任务或实例对最有效的行动空间造成潜在的多重限制:任务组最好在机器人整个行动空间的多个方面采取行动:任务组最好通过在机器人整个行动空间中采取行动来解决。我们介绍LASER,这是学习潜在行动空间以高效增强学习的潜在行动空间的一种方法。LASER将学习潜在行动空间的问题纳入两个子问题,即行动空间学习和新行动空间的政策学习。它利用了类似操作任务中的数据,无论是从离线专家还是政策学习过程中的在线数据,并从这些轨迹中学习了从原始活动空间到潜在行动空间的图象学。LASER被训练成一个变异的编码器分解潜伏行动空间,同时保持行动重建和潜伏空间动态一致性。我们评价LASER在模拟中的两项接触丰富的机器人任务,并分析在生成的潜在行动空间空间空间空间中的政策学习的好处。我们展示了从原始空间定位到原始空间行动的更精确化。我们展示了将空间定位任务,我们观察到原始空间的图像任务比前空间的更精化。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
3+阅读 · 2018年11月19日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员