Multi-task learning (MTL) allows deep neural networks to learn from related tasks by sharing parameters with other networks. In practice, however, MTL involves searching an enormous space of possible parameter sharing architectures to find (a) the layers or subspaces that benefit from sharing, (b) the appropriate amount of sharing, and (c) the appropriate relative weights of the different task losses. Recent work has addressed each of the above problems in isolation. In this work we present an approach that learns a latent multi-task architecture that jointly addresses (a)--(c). We present experiments on synthetic data and data from OntoNotes 5.0, including four different tasks and seven different domains. Our extension consistently outperforms previous approaches to learning latent architectures for multi-task problems and achieves up to 15% average error reductions over common approaches to MTL.
翻译:多任务学习(MTL)使深层神经网络能够与其他网络共享参数,从相关任务中学习。但在实践上,MTL涉及寻找可能的参数共享结构的巨大空间,以便找到(a) 共享的好处的层或子空间,(b) 适当的共享量,(c) 不同任务损失的适当相对权重。最近的工作孤立地解决了上述每一个问题。在这项工作中,我们提出了一个方法,学习一种潜在的多任务结构,共同解决(a)-(c)问题。我们介绍了Onto Note 5.0的合成数据和数据实验,包括四个不同任务和七个不同领域。我们的扩展始终超越了以往学习多任务问题潜在结构的方法,并实现了超过MTL通用方法15%的平均误差减少率。