We present the hidden-layer concatenated physics informed neural network (HLConcPINN) method, which combines hidden-layer concatenated feed-forward neural networks, a modified block time marching strategy, and a physics informed approach for approximating partial differential equations (PDEs). We analyze the convergence properties and establish the error bounds of this method for two types of PDEs: parabolic (exemplified by the heat and Burgers' equations) and hyperbolic (exemplified by the wave and nonlinear Klein-Gordon equations). We show that its approximation error of the solution can be effectively controlled by the training loss for dynamic simulations with long time horizons. The HLConcPINN method in principle allows an arbitrary number of hidden layers not smaller than two and any of the commonly-used smooth activation functions for the hidden layers beyond the first two, with theoretical guarantees. This generalizes several recent neural-network techniques, which have theoretical guarantees but are confined to two hidden layers in the network architecture and the $\tanh$ activation function. Our theoretical analyses subsequently inform the formulation of appropriate training loss functions for these PDEs, leading to physics informed neural network (PINN) type computational algorithms that differ from the standard PINN formulation. Ample numerical experiments are presented based on the proposed algorithm to validate the effectiveness of this method and confirm aspects of the theoretical analyses.
翻译:暂无翻译