Increasing volume of user-generated human-centric video content and their applications, such as video retrieval and browsing, require compact representations that are addressed by the video summarization literature. Current supervised studies formulate video summarization as a sequence-to-sequence learning problem and the existing solutions often neglect the surge of human-centric view, which inherently contains affective content. In this study, we investigate the affective-information enriched supervised video summarization task for human-centric videos. First, we train a visual input-driven state-of-the-art continuous emotion recognition model (CER-NET) on the RECOLA dataset to estimate emotional attributes. Then, we integrate the estimated emotional attributes and the high-level representations from the CER-NET with the visual information to define the proposed affective video summarization architectures (AVSUM). In addition, we investigate the use of attention to improve the AVSUM architectures and propose two new architectures based on temporal attention (TA-AVSUM) and spatial attention (SA-AVSUM). We conduct video summarization experiments on the TvSum database. The proposed AVSUM-GRU architecture with an early fusion of high level GRU embeddings and the temporal attention based TA-AVSUM architecture attain competitive video summarization performances by bringing strong performance improvements for the human-centric videos compared to the state-of-the-art in terms of F-score and self-defined face recall metrics.
翻译:由用户生成的以人为中心的视频内容及其应用,如视频检索和浏览量的增加,需要视频总结文献处理的简明表述。当前受监督的研究将视频总结作为顺序到顺序学习的问题和现有解决方案,往往忽视了以人为中心的观点的激增,而该观点本身包含有影响的内容。我们在这次研究中,调查影响性信息丰富了以人为中心的视频的监控视频总结任务。首先,我们在RECOLA数据集上培训视觉驱动的、以最先进的面貌持续情感识别模型(CER-NET),以估计情感属性。然后,我们将CER-NET的估计情感属性和高级别表述与视觉信息相结合,以确定拟议的以情感为中心的视频总结结构(AVSUMU),此外,我们调查利用关注改善以人为中心的视频结构,根据时间关注(TA-AVSUM)和空间关注(SA-AVSUM),我们在TvS-SUR高级视频结构中进行视频总结,通过高层次的SUVAVRS-RA 高层次,将高层次的性、高层次的图像-AVAVAVAV-RMLS-S-S-S-S-S-S-S 高级图像-S-S-S-S-SAL-SAL-SAL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SAL-S-S-S-S-S-S-S-S-S-S-S-S-S-SAL-S-SAL-SAL-SAL-SAL-S-S-S-S-S-S-S-SAL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SMA-SAL-SAL-SAL-SMA-SAL-SAL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S