Bipartite graphs are commonly used to model relationships between two distinct entities in real-world applications, such as user-product interactions, user-movie ratings and collaborations between authors and publications. A butterfly (a 2x2 bi-clique) is a critical substructure in bipartite graphs, playing a significant role in tasks like community detection, fraud detection, and link prediction. As more real-world data is presented in a streaming format, efficiently counting butterflies in streaming bipartite graphs has become increasingly important. However, most existing algorithms typically assume that duplicate edges are absent, which is hard to hold in real-world graph streams, as a result, they tend to sample edges that appear multiple times, leading to inaccurate results. The only algorithm designed to handle duplicate edges is FABLE, but it suffers from significant limitations, including high variance, substantial time complexity, and memory inefficiency due to its reliance on a priority queue. To overcome these limitations, we introduce DEABC (Duplicate-Edge-Aware Butterfly Counting), an innovative method that uses bucket-based priority sampling to accurately estimate the number of butterflies, accounting for duplicate edges. Compared to existing methods, DEABC significantly reduces memory usage by storing only the essential sampled edge data while maintaining high accuracy. We provide rigorous proofs of the unbiasedness and variance bounds for DEABC, ensuring they achieve high accuracy. We compare DEABC with state-of-the-art algorithms on real-world streaming bipartite graphs. The results show that our DEABC outperforms existing methods in memory efficiency and accuracy, while also achieving significantly higher throughput.
翻译:暂无翻译