We present GO-Surf, a direct feature grid optimization method for accurate and fast surface reconstruction from RGB-D sequences. We model the underlying scene with a learned hierarchical feature voxel grid that encapsulates multi-level geometric and appearance local information. Feature vectors are directly optimized such that after being tri-linearly interpolated, decoded by two shallow MLPs into signed distance and radiance values, and rendered via surface volume rendering, the discrepancy between synthesized and observed RGB/depth values is minimized. Our supervision signals -- RGB, depth and approximate SDF -- can be obtained directly from input images without any need for fusion or post-processing. We formulate a novel SDF gradient regularization term that encourages surface smoothness and hole filling while maintaining high frequency details. GO-Surf can optimize sequences of $1$-$2$K frames in $15$-$45$ minutes, a speedup of $\times60$ over NeuralRGB-D, the most related approach based on an MLP representation, while maintaining on par performance on standard benchmarks. Project page: https://jingwenwang95.github.io/go_surf/
翻译:GO-Surf是使用RGB-D序列进行准确和快速地表重建的直接地格优化方法,我们从RGB-D序列中推出一种直接的地格优化方法,即GO-Surf。我们用一个包含多层次几何和外观信息的高级性格Voxel网格来模拟基础场景,其特性直接优化,这样,在三线内插后,由两个浅色MLP解码,以签署距离和亮度值,通过表面体积转换,使合成和观测RGB/深度值之间的差异最小化。我们的监督信号 -- -- RGB、深度和近似SDF -- -- 可以直接从输入图像中获取,而无需进行聚合或后处理。我们制定了一个新的SDF梯度定式术语,鼓励表面平滑和填补,同时保持高频细节。GO-Surf可以优化1美元-2K框架的顺序,以1美元至45分钟,加速度60美元超过NeurorRGBB-D,这是以MLP代表为基础的最相关方法,同时保持标准基准业绩。项目网页:http://jwangwangin_gusio.giubsurio/gisofgiofgio。