We present Progressively Deblurring Radiance Field (PDRF), a novel approach to efficiently reconstruct high quality radiance fields from blurry images. While current State-of-The-Art (SoTA) scene reconstruction methods achieve photo-realistic rendering results from clean source views, their performances suffer when the source views are affected by blur, which is commonly observed for images in the wild. Previous deblurring methods either do not account for 3D geometry, or are computationally intense. To addresses these issues, PDRF, a progressively deblurring scheme in radiance field modeling, accurately models blur by incorporating 3D scene context. PDRF further uses an efficient importance sampling scheme, which results in fast scene optimization. Specifically, PDRF proposes a Coarse Ray Renderer to quickly estimate voxel density and feature; a Fine Voxel Renderer is then used to achieve high quality ray tracing. We perform extensive experiments and show that PDRF is 15X faster than previous SoTA while achieving better performance on both synthetic and real scenes.


翻译:我们展示了一种从模糊图像中高效重建高质量亮度场的新型方法,即“逐渐淡化辐射场 ” ( PDRF ), 这是一种从模糊图像中高效重建高质量亮度场域的新办法。 虽然当前的“艺术状态”现场重建方法能够从干净的源视图中产生光现实效果,但当源视图受到模糊影响时,其性能就会受到影响,这种模糊在野外图像中通常会观察到。 以前的“ 模糊” 方法要么没有3D 几何法,要么在计算上十分密集。 为了解决这些问题, PDRF 是一个在亮度场模型中逐渐脱色的计划,精确的模型被包含在3D 场景背景中模糊。 PDRF 进一步使用高效的重要取样方法, 从而导致快速的场景优化。 具体地说, PDRF 提议使用一个粗鲁射线来快速估计 voxel 密度和特征; 然后使用一个 Fine Voxel Renderer 来进行高质量的光追踪。 我们进行了广泛的实验, 并表明DRF 比以前的SDRF 15X比以前的 SoTA快15X更快, 同时在合成场和真实场上取得更好的表现。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员