This paper presents a novel probabilistic approach to deep robot learning from demonstrations (LfD). Deep movement primitives (DMPs) are deterministic LfD model that maps visual information directly into a robot trajectory. This paper extends DMPs and presents a deep probabilistic model that maps the visual information into a distribution of effective robot trajectories. The architecture that leads to the highest level of trajectory accuracy is presented and compared with the existing methods. Moreover, this paper introduces a novel training method for learning domain-specific latent features. We show the superiority of the proposed probabilistic approach and novel latent space learning in the lab's real-robot task of strawberry harvesting. The experimental results demonstrate that latent space learning can significantly improve model prediction performances. The proposed approach allows to sample trajectories from distribution and optimises the robot trajectory to meet a secondary objective, e.g. collision avoidance.
翻译:本文介绍了从演示中深层机器人学习的一种新颖的概率方法(LfD)。深运动原始(DMPs)是确定性LfD模型,将视觉信息直接映射成机器人轨道。本文扩展了DMPs,并展示了一个深度概率模型,将视觉信息映射成有效的机器人轨迹分布。介绍了导致轨道精确度达到最高水平的结构,并与现有方法相比。此外,本文件还介绍了一种用于学习特定领域潜在特征的新式培训方法。我们展示了在实验室的草莓收获实机器人任务中拟议的概率方法和新颖的潜在空间学习的优越性。实验结果表明,潜空学习可以大大改进模型预测性能。拟议方法允许对分布轨迹进行抽样,并优化机器人轨道以达到次要目标,例如避免碰撞。