Recent progress in 4D implicit representation focuses on globally controlling the shape and motion with low dimensional latent vectors, which is prone to missing surface details and accumulating tracking error. While many deep local representations have shown promising results for 3D shape modeling, their 4D counterpart does not exist yet. In this paper, we fill this blank by proposing a novel Local 4D implicit Representation for Dynamic clothed human, named LoRD, which has the merits of both 4D human modeling and local representation, and enables high-fidelity reconstruction with detailed surface deformations, such as clothing wrinkles. Particularly, our key insight is to encourage the network to learn the latent codes of local part-level representation, capable of explaining the local geometry and temporal deformations. To make the inference at test-time, we first estimate the inner body skeleton motion to track local parts at each time step, and then optimize the latent codes for each part via auto-decoding based on different types of observed data. Extensive experiments demonstrate that the proposed method has strong capability for representing 4D human, and outperforms state-of-the-art methods on practical applications, including 4D reconstruction from sparse points, non-rigid depth fusion, both qualitatively and quantitatively.
翻译:4D 隐含表示方式的最近进展侧重于以低维潜潜载媒介对形状和运动进行全球控制,这容易丢失表面细节,并积累追踪错误。虽然许多深处的地方表示方式已经显示3D形状模型的有希望结果,但它们的4D对应方还不存在。在本文中,我们填补这一空白的方法是提出一个新的地方4D隐含表层结构代表方式,称为LORD,它具有4D人类模型和地方代表的优点,并且能够以详细的表面变形,例如服装皱纹,进行高度不贞操重建。 特别是,我们的关键洞察力是鼓励网络学习地方部分代表形式的潜在代码,能够解释当地的几何形状和时间变形。为了在测试时作出推断,我们首先估计内体骨运动,以跟踪每个阶段的当地部分,然后根据不同类型观察到的数据,通过自动解码优化每个部分的潜在代码。 广泛的实验表明,拟议的方法具有很强的能力,可以代表4D 人和外形状态,能够解释当地部分代表当地部分代表,能够解释当地的几度和时间变形结构。为了实际应用的深度,包括4RID 和定量的深度,从4D 的深度,从4Q再进行4D 的再利用。