The sequential multiple assignment randomized trial (SMART) is the gold standard trial design to generate data for the evaluation of multi-stage treatment regimes. As with conventional (single-stage) randomized clinical trials, interim monitoring allows early stopping; however, there are few methods for principled interim analysis in SMARTs. Because SMARTs involve multiple stages of treatment, a key challenge is that not all enrolled participants will have progressed through all treatment stages at the time of an interim analysis. Wu et al. (2021) propose basing interim analyses on an estimator for the mean outcome under a given regime that uses data only from participants who have completed all treatment stages. We propose an estimator for the mean outcome under a given regime that gains efficiency by using partial information from enrolled participants regardless of their progression through treatment stages. Using the asymptotic distribution of this estimator, we derive associated Pocock and O'Brien-Fleming testing procedures for early stopping. In simulation experiments, the estimator controls type I error and achieves nominal power while reducing expected sample size relative to the method of Wu et al. (2021). We present an illustrative application of the proposed estimator based on a recent SMART evaluating behavioral pain interventions for breast cancer patients.
翻译:连续多次派任随机试验(SMART)是用于为多阶段治疗制度评价生成数据的黄金标准试验设计(SMART),与常规(单阶段)随机临床试验一样,临时监测允许提前停止;然而,在SMARTs中,没有多少有原则的临时分析方法。由于SMARTs涉及多个治疗阶段,一个关键挑战是,并非所有注册的参与者在临时分析时都会在所有治疗阶段取得进展。Wu等人(2021年)提议对某一制度下的平均结果的估测器进行临时分析,该制度只使用已完成所有治疗阶段的参与者提供的数据。我们提议对某一制度下的平均结果进行估计,通过使用注册的参与者提供的部分信息提高效率,而不论其在治疗阶段的演进程度如何。我们利用该估测器的无干扰分布,得出了相关的 Pocock 和 O'brien-Fleming 测试程序,以便及早停止。在模拟实验中,估计测算器型I误差,并取得名义能力,同时减少与最近治疗方法相比预期的样本规模。(2021年)我们用一个基于癌症试验的模型评估。