The sequential multiple assignment randomized trial (SMART) is the gold standard trial design to generate data for the evaluation of multi-stage treatment regimes. As with conventional (single-stage) randomized clinical trials, interim monitoring allows early stopping; however, there are few methods for principled interim analysis in SMARTs. Because SMARTs involve multiple stages of treatment, a key challenge is that not all enrolled participants will have progressed through all treatment stages at the time of an interim analysis. Wu et al. (2021) propose basing interim analyses on an estimator for the mean outcome under a given regime that uses data only from participants who have completed all treatment stages. We propose an estimator for the mean outcome under a given regime that gains efficiency by using partial information from enrolled participants regardless of their progression through treatment stages. Using the asymptotic distribution of this estimator, we derive associated Pocock and O'Brien-Fleming testing procedures for early stopping. In simulation experiments, the estimator controls type I error and achieves nominal power while reducing expected sample size relative to the method of Wu et al. (2021). We present an illustrative application of the proposed estimator based on a recent SMART evaluating behavioral pain interventions for breast cancer patients.


翻译:连续多次派任随机试验(SMART)是用于为多阶段治疗制度评价生成数据的黄金标准试验设计(SMART),与常规(单阶段)随机临床试验一样,临时监测允许提前停止;然而,在SMARTs中,没有多少有原则的临时分析方法。由于SMARTs涉及多个治疗阶段,一个关键挑战是,并非所有注册的参与者在临时分析时都会在所有治疗阶段取得进展。Wu等人(2021年)提议对某一制度下的平均结果的估测器进行临时分析,该制度只使用已完成所有治疗阶段的参与者提供的数据。我们提议对某一制度下的平均结果进行估计,通过使用注册的参与者提供的部分信息提高效率,而不论其在治疗阶段的演进程度如何。我们利用该估测器的无干扰分布,得出了相关的 Pocock 和 O'brien-Fleming 测试程序,以便及早停止。在模拟实验中,估计测算器型I误差,并取得名义能力,同时减少与最近治疗方法相比预期的样本规模。(2021年)我们用一个基于癌症试验的模型评估。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员