Data augmentation is essential when applying Machine Learning in small-data regimes. It generates new samples following the observed data distribution while increasing their diversity and variability to help researchers and practitioners improve their models' robustness and, thus, deploy them in the real world. Nevertheless, its usage in tabular data still needs to be improved, as prior knowledge about the underlying data mechanism is seldom considered, limiting the fidelity and diversity of the generated data. Causal data augmentation strategies have been pointed out as a solution to handle these challenges by relying on conditional independence encoded in a causal graph. In this context, this paper experimentally analyzed the ADMG causal augmentation method considering different settings to support researchers and practitioners in understanding under which conditions prior knowledge helps generate new data points and, consequently, enhances the robustness of their models. The results highlighted that the studied method (a) is independent of the underlying model mechanism, (b) requires a minimal number of observations that may be challenging in a small-data regime to improve an ML model's accuracy, (c) propagates outliers to the augmented set degrading the performance of the model, and (d) is sensitive to its hyperparameter's value.


翻译:数据增强在小数据领域应用机器学习时非常重要。它生成了遵循观察到的数据分布并增加其多样性和可变性的新样本,帮助研究人员和从业者提高模型的鲁棒性,从而在真实世界中部署它们。然而,在表格数据中使用它仍需要改进,因为很少考虑底层数据机制的先验知识,从而限制了生成数据的准确性和多样性。因果数据增强策略被指出是解决这些挑战的一种方法,因为它依赖于因果图中编码的条件独立性。在这种情况下,本文通过考虑不同的设置实验分析了ADMG因果增强方法,以帮助研究人员和从业者了解在哪些条件下先验知识有助于生成新的数据,从而提高其模型的鲁棒性。结果表明,所研究的方法(a)独立于底层模型机制,(b)需要最少数量的观察数据,在小数据情况下可能具有挑战性,以提高机器学习模型的准确性,(c)将异常值传播到增强集以降低模型的性能,以及(d)对其超参数的值敏感。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
67+阅读 · 2022年6月30日
A Survey on Data Augmentation for Text Classification
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员