We develop flexible and nonparametric estimators of the average treatment effect (ATE) transported to a new population that offer potential efficiency gains by incorporating only a sufficient subset of effect modifiers that are differentially distributed between the source and target populations into the transport step. We develop both a one-step estimator when this sufficient subset of effect modifiers is known and a collaborative one-step estimator when it is unknown. We discuss when we would expect our estimators to be more efficient than those that assume all covariates may be relevant effect modifiers and the exceptions when we would expect worse efficiency. We use simulation to compare finite sample performance across our proposed estimators and existing estimators of the transported ATE, including in the presence of practical violations of the positivity assumption. Lastly, we apply our proposed estimators to a large-scale housing trial.
翻译:Translated Abstract:
我们开发了灵活、非参数的平均治疗效应(Average Treatment Effect, ATE)估计器,用于传输到新人群,通过仅将足够的影响修饰变量(Effect Modifiers)纳入传输步骤中,提供潜在的效率增益。当已知足够的影响修饰变量时,我们开发了一种一步估计器;当未知时,则开发了协作的一步估计器。我们讨论了当我们预计我们的估计器比那些假设所有协变量可能是相关的影响修饰变量的估计器更有效时,以及我们预计更糟糕的效率的例外情况。我们使用模拟方法比较我们提出的ATE估计器和现有ATE估计器的有限样本性能,包括在实际违反正性假设的情况下。最后,我们将我们提出的估计器应用于一个大型住房试验中。