This paper studies the class of scenario-based safety testing algorithms in the black-box safety testing configuration. For algorithms sharing the same state-action set coverage with different sampling distributions, it is commonly believed that prioritizing the exploration of high-risk state-actions leads to a better sampling efficiency. Our proposal disputes the above intuition by introducing an impossibility theorem that provably shows all safety testing algorithms of the aforementioned difference perform equally well with the same expected sampling efficiency. Moreover, for testing algorithms covering different sets of state-actions, the sampling efficiency criterion is no longer applicable as different algorithms do not necessarily converge to the same termination condition. We then propose a testing aggressiveness definition based on the almost safe set concept along with an unbiased and efficient algorithm that compares the aggressiveness between testing algorithms. Empirical observations from the safety testing of bipedal locomotion controllers and vehicle decision-making modules are also presented to support the proposed theoretical implications and methodologies.


翻译:本文研究了黑盒安全测试中的一类情境安全测试算法。针对具有相同状态-动作覆盖率但不同采样分布的算法,通常认为优先探索高风险状态-动作可以提高采样效率。本文提出一项不可能定理,可以证明上述直觉是错误的,并且证明了这些差异的安全测试算法在期望的采样效率相同情况下会表现出相同的性能。此外,针对涵盖不同状态 - 动作集合的测试算法,采样效率准则不再适用,因为不同算法不一定会收敛到相同的终止条件。因此,我们提出了一种基于几乎安全集概念的测试攻击策略定义,以及一种无偏和高效的算法,用于比较测试算法之间的攻击性。此外,还提供了使用该理论和方法的案例分析,包括对于两足步行控制器和车辆决策模块的安全测试的实验数据。

0
下载
关闭预览

相关内容

《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
【CMU博士论文】黑盒和多目标优化策略,151页pdf
专知会员服务
51+阅读 · 2022年11月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
15+阅读 · 2020年8月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关VIP内容
相关资讯
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
15+阅读 · 2020年8月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员