We propose a supervised principal component regression method for relating functional responses with high dimensional covariates. Unlike the conventional principal component analysis, the proposed method builds on a newly defined expected integrated residual sum of squares, which directly makes use of the association between functional response and predictors. Minimizing the integrated residual sum of squares gives the supervised principal components, which is equivalent to solving a sequence of nonconvex generalized Rayleigh quotient optimization problems and thus is computationally intractable. To overcome this computational challenge, we reformulate the nonconvex optimization problems into a simultaneous linear regression, with a sparse penalty added to deal with high dimensional predictors. Theoretically, we show that the reformulated regression problem recovers the same supervised principal subspace under suitable conditions. Statistically, we establish non-asymptotic error bounds for the proposed estimators. Numerical studies and an application to the Human Connectome Project lend further support.


翻译:我们建议了一种受监督的主要部分回归法,用于将功能反应与高维共差联系起来。与常规主要部分分析不同,拟议方法以新定义的预期综合残余方和正方和正方和正方之间直接利用功能反应和预测器之间的联系。最小化综合残余方和正方和受监督的主要部分提供了受监督的主要部分,这相当于解决一系列非混凝土普遍雷利商商价优化问题,因此在计算上是难以解决的。为了克服这一计算挑战,我们重新将非对流优化问题改成一个同时线性回归,加上微量的罚款,以处理高维预测器。理论上,我们表明重订回归问题在适当条件下回收了同样的受监督的主要次空间。从统计学上讲,我们为拟议的估算器设定了非被动误差界限。数字研究和人类连接器项目应用程序提供了进一步的支持。

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
sklearn 与分类算法
人工智能头条
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
分别基于SVM和ARIMA模型的股票预测 Python实现 附Github源码
数据挖掘入门与实战
15+阅读 · 2017年9月9日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
sklearn 与分类算法
人工智能头条
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
分别基于SVM和ARIMA模型的股票预测 Python实现 附Github源码
数据挖掘入门与实战
15+阅读 · 2017年9月9日
Top
微信扫码咨询专知VIP会员