Mixed linear regression (MLR) model is among the most exemplary statistical tools for modeling non-linear distributions using a mixture of linear models. When the additive noise in MLR model is Gaussian, Expectation-Maximization (EM) algorithm is a widely-used algorithm for maximum likelihood estimation of MLR parameters. However, when noise is non-Gaussian, the steps of EM algorithm may not have closed-form update rules, which makes EM algorithm impractical. In this work, we study the maximum likelihood estimation of the parameters of MLR model when the additive noise has non-Gaussian distribution. In particular, we consider the case that noise has Laplacian distribution and we first show that unlike the the Gaussian case, the resulting sub-problems of EM algorithm in this case does not have closed-form update rule, thus preventing us from using EM in this case. To overcome this issue, we propose a new algorithm based on combining the alternating direction method of multipliers (ADMM) with EM algorithm idea. Our numerical experiments show that our method outperforms the EM algorithm in statistical accuracy and computational time in non-Gaussian noise case.
翻译:混合线性回归( MLR) 模型是使用线性模型混合模型模拟非线性分布的最模范统计工具之一。 当 MLR 模型的添加噪音是高山时, 期望- 最大化算法( EM) 算法是用于最大可能估计 MLR参数的一种广泛使用的算法。 但是, 当噪音不是高山时, EM 算法的步骤可能没有封闭式更新规则, 这使EM 算法不切实际。 在这项工作中, 我们研究当添加噪音有非加西南分布时MLR模型参数的最大可能性估计。 我们特别考虑到, 噪音有拉普尔西亚分布, 我们首先发现, 与高山情况不同, 由此产生的EM 算法的子问题没有闭式更新规则, 从而阻止我们在此案中使用EM 。 要克服这个问题, 我们提议一种新的算法, 其基础是将乘数的交替方向方法( ADMMM) 和 EM 算法概念结合起来。 我们的数字实验显示, 我们的方法在统计精确性和不测算中, 。