In modern data science, dynamic tensor data is prevailing in numerous applications. An important task is to characterize the relationship between such dynamic tensor and external covariates. However, the tensor data is often only partially observed, rendering many existing methods inapplicable. In this article, we develop a regression model with partially observed dynamic tensor as the response and external covariates as the predictor. We introduce the low-rank, sparsity and fusion structures on the regression coefficient tensor, and consider a loss function projected over the observed entries. We develop an efficient non-convex alternating updating algorithm, and derive the finite-sample error bound of the actual estimator from each step of our optimization algorithm. Unobserved entries in tensor response have imposed serious challenges. As a result, our proposal differs considerably in terms of estimation algorithm, regularity conditions, as well as theoretical properties, compared to the existing tensor completion or tensor response regression solutions. We illustrate the efficacy of our proposed method using simulations, and two real applications, a neuroimaging dementia study and a digital advertising study.
翻译:在现代数据科学中,动态强力数据在众多应用中占据主导地位。一项重要任务是描述这些动态强力和外部共变体之间的关系。然而,强力数据往往只被部分观察到,使许多现有方法无法适用。在本条中,我们开发了一个回归模型,部分观察到动态强力作为响应,外部共变作为预测者。我们在回归系数强中引入了低位、聚度和聚合结构,并考虑了观察到的条目上所预测的损失函数。我们开发了高效的非混凝土交替更新算法,并从我们优化算法的每个步骤中得出了实际估计方的有限缩略错误。在 抗拉法中未观察到的条目带来了严重的挑战。因此,我们的提案在估算算法、规律性条件以及理论属性方面与现有的高压完成率或高压反应回归法解决方案有很大差异。我们用模拟和两种实际应用、神经成像学研究和数字广告研究来说明我们拟议方法的功效。