A regularized vector autoregressive hidden semi-Markov model is developed to analyze multivariate financial time series with switching data generating regimes. Furthermore, an augmented EM algorithm is proposed for parameter estimation by embedding regularized estimators for the state-dependent covariance matrices and autoregression matrices in the M-step. The performance of the proposed regularized estimators is evaluated both in the simulation experiments and on the New York Stock Exchange financial portfolio data.


翻译:开发了一种正规化的矢量自动递减隐藏半马尔科夫模型,以分析具有转换数据生成机制的多变量财务时间序列;此外,还提议了一种强化的EM算法,通过在M级中嵌入国家依赖的共变矩阵和自动递减矩阵的正规化估计值来估算参数。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
77+阅读 · 2020年4月24日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
R语言数据挖掘利器:Rattle包
R语言中文社区
21+阅读 · 2018年11月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【收藏】机器学习的Pytorch实现资源集合【附下载链接】
机器学习算法与Python学习
10+阅读 · 2018年9月8日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
R语言数据挖掘利器:Rattle包
R语言中文社区
21+阅读 · 2018年11月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【收藏】机器学习的Pytorch实现资源集合【附下载链接】
机器学习算法与Python学习
10+阅读 · 2018年9月8日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员