Recently, several universal methods have been proposed for online convex optimization, and attain minimax rates for multiple types of convex functions simultaneously. However, they need to design and optimize one surrogate loss for each type of functions, which makes it difficult to exploit the structure of the problem and utilize the vast amount of existing algorithms. In this paper, we propose a simple strategy for universal online convex optimization, which avoids these limitations. The key idea is to construct a set of experts to process the original online functions, and deploy a meta-algorithm over the \emph{linearized} losses to aggregate predictions from experts. Specifically, we choose Adapt-ML-Prod to track the best expert, because it has a second-order bound and can be used to leverage strong convexity and exponential concavity. In this way, we can plug in off-the-shelf online solvers as black-box experts to deliver problem-dependent regret bounds. Furthermore, our strategy inherits the theoretical guarantee of any expert designed for strongly convex functions and exponentially concave functions, up to a double logarithmic factor. For general convex functions, it maintains the minimax optimality and also achieves a small-loss bound.


翻译:最近,为在线 convex 优化提出了几种通用方法, 并同时实现多种 convex 功能的最小值。 但是, 它们需要设计并优化每种功能类型的一种替代损失, 这使得难以利用问题的结构并利用大量现有的算法。 在本文中, 我们提出了一种简单的在线 Civex 优化通用战略, 以避免这些限制。 关键的想法是构建一套专家来处理最初的在线功能, 并在 emph{linearized} 损失上部署一个元值, 用于专家的综合预测。 具体地说, 我们选择 适应- ML- Prod 来跟踪最佳专家, 因为它有第二顺序的约束, 并且可以用来利用强大的 convex 和 指数化的精度。 这样, 我们就可以将现成的在线解决方案作为黑箱专家来传递依赖问题的遗憾约束。 此外, 我们的战略继承了任何专家的理论保证, 用于强烈的 convex 功能和指数化的 concaveve 函数, 直至 双向线性最小化的组合函数。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月5日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员