This paper initializes the study of {\em range subgraph counting} and {\em range subgraph listing}, both of which are motivated by the significant demands in practice to perform graph analytics on subgraphs pertinent to only selected, as opposed to all, vertices. In the first problem, there is an undirected graph $G$ where each vertex carries a real-valued attribute. Given an interval $q$ and a pattern $Q$, a query counts the number of occurrences of $Q$ in the subgraph of $G$ induced by the vertices whose attributes fall in $q$. The second problem has the same setup except that a query needs to enumerate (rather than count) those occurrences with a small delay. In both problems, our goal is to understand the tradeoff between {\em space usage} and {\em query cost}, or more specifically: (i) given a target on query efficiency, how much pre-computed information about $G$ must we store? (ii) Or conversely, given a budget on space usage, what is the best query time we can hope for? We establish a suite of upper- and lower-bound results on such tradeoffs for various query patterns.
翻译:本文初始化了对 {em 范围子计 } 和 {em 范围子计 } 和 {em 子列 } 的研究,这两项研究的动机都是在实际中要求对只选定的而不是全部的脊椎的子集进行图表分析的巨大要求。 在第一个问题中,每个脊椎带有真实价值属性的未经指示的 $G 美元 。 在一个间隔 $ 和 模式 Q 的情况下, 一个查询计算 $G 的子集 中 $Q 的 发生次数。 第二个问题也有相同的设置, 除了查询需要略为延迟地罗列( 而不是计数 ) 。 在这两个问题上, 我们的目标是了解 $em 空间 使用 和 $ 查询 成本 之间的权衡, 或者更具体地说 : (i) 给查询效率的目标, 我们必须储存多少关于$G 美元 的预算信息? (ii) 或者相反地说, 在空间使用预算中,什么是最佳的查询结果?