This paper presents methods for analyzing spatial experiments when complex spillovers, displacement effects, and other types of "interference" are present. We present a robust, design-based approach to analyzing effects in such settings. The design-based approach derives inferential properties for causal effect estimators from known features of the experimental design, in a manner analogous to inference in sample surveys. The methods presented here target a quantity of interest called the "average marginalized response," which is equal to the average effect of activating a treatment at an intervention node that is a given distance away, averaging ambient effects emanating from other intervention nodes. We provide a step-by-step tutorial based on the SpatialEffect package for R. We apply the methods to a randomized experiment on payments for community forest conservation in Uganda, showing how our methods reveal possibly substantial spatial spillovers that more conventional analyses cannot detect.
翻译:本文介绍了在存在复杂的外溢效应、迁移效应和其他类型的“干涉”时分析空间实验的方法。我们提出了一种强有力的、基于设计的方法来分析这些环境中的影响。基于设计的方法从实验设计已知特征中得出因果关系估计者的推断属性,类似于抽样调查中的推断。这里介绍的方法针对的是一定数量的利息,称为“平均边缘化反应 ”, 相当于在距离一定距离的干预节点启动治疗的平均效果, 平均来自其他干预节点的环境影响。我们根据R. SpaceEffect 一揽子计划, 提供了一种渐进式辅导。我们采用的方法对乌干达社区森林养护付费随机进行实验,表明我们的方法如何揭示出更多常规分析无法探测到的可能的显著空间外溢效应。</s>