This paper considers the problem of inference in cluster randomized experiments when cluster sizes are non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by non-ignorable cluster sizes we mean that "large'' clusters and "small'' clusters may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing sizes. In order to permit this sort of flexibility, we consider a sampling framework in which cluster sizes themselves are random. In this way, our analysis departs from earlier analyses of cluster randomized experiments in which cluster sizes are treated as non-random. We distinguish between two different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-weighted cluster-level average treatment effect. For each parameter, we provide methods for inference in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned using a covariate-adaptive stratified randomization procedure. We additionally permit the experimenter to sample only a subset of the units within each cluster rather than the entire cluster and demonstrate the implications of such sampling for some commonly used estimators. A small simulation study and empirical demonstration show the practical relevance of our theoretical results.
翻译:本文考虑了集群随机实验中当组群大小不显眼时组群随机实验的推论问题。 这里, 通过分组随机实验, 我们指在组群级别上分配处理的群集随机实验的早期分析。 我们指在组群级别上分配处理的群集随机实验; 指非可忽略的群集尺寸的群集大小, 我们指“ 大群群群和小群群群群可能具有差异性, 特别是, 处理的效果可能因不同大小的组群而异。 为了允许这种灵活性, 我们考虑组群大小本身是随机的抽样框架。 这样, 我们的分析偏离了以前对群群群群随机规模规模大小作为非随机处理的群集随机实验性实验性实验性实验。 我们区分了两种不同的利益参数: 同等加权的群群群平均处理效果, 以及大小的群集平均处理效果。 对于每一个参数, 我们提供了在一个零星组框架里, 组群集的数量往往被分配为宽度和处理的抽样框架。 我们还允许实验者只对每个组群集使用的一些实验性实验性分析结果进行抽样, 。</s>