Data sharing between different parties has become increasingly common across industry and academia. An important class of privacy concerns that arises in data sharing scenarios regards the underlying distribution of data. For example, the total traffic volume of data from a networking company can reveal the scale of its business, which may be considered a trade secret. Unfortunately, existing privacy frameworks (e.g., differential privacy, anonymization) do not adequately address such concerns. In this paper, we propose summary statistic privacy, a framework for analyzing and protecting these summary statistic privacy concerns. We propose a class of quantization mechanisms that can be tailored to various data distributions and statistical secrets, and analyze their privacy-distortion trade-offs under our framework. We prove corresponding lower bounds on the privacy-utility tradeoff, which match the tradeoffs of the quantization mechanism under certain regimes, up to small constant factors. Finally, we demonstrate that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms on real-world datasets.


翻译:不同行业和学术界之间日益普遍地分享数据。在数据分享假设中出现的一个重要隐私问题涉及数据的基本分布。例如,联网公司的数据总流量可以揭示其业务规模,可被视为贸易秘密。不幸的是,现有的隐私框架(例如,不同的隐私、匿名化)不能充分解决这种关切。在本文件中,我们提出了简要统计数据隐私,这是分析和保护这些简要统计数据隐私关切的一个框架。我们建议了一类量化机制,可以针对各种数据分布和统计秘密进行量身定制,并分析我们框架下的隐私扭曲交易。我们证明,与某些制度下的四分制机制的权衡相对应的隐私效用交易范围相对较低,甚至存在一些不变的因素。最后,我们证明拟议的四分制机制比现实世界数据集的替代隐私机制更能实现更好的隐私扭曲交易。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员