We present a first-order method for solving constrained optimization problems. The method is derived from our previous work, a modified search direction method inspired by singular value decomposition. In this work, we simplify its computational framework to a ``gradient descent akin'' method (GDAM), i.e., the search direction is computed using a linear combination of the negative and normalized objective and constraint gradient. We give fundamental theoretical guarantees on the global convergence of the method. This work focuses on the algorithms and applications of GDAM. We present computational algorithms that adapt common strategies for the gradient descent method. We demonstrate the potential of the method using two engineering applications, shape optimization and sensor network localization. When practically implemented, GDAM is robust and very competitive in solving the considered large and challenging optimization problems.


翻译:我们提出了解决限制优化问题的一级方法。该方法来自我们以前的工作,即根据单值分解而修改的搜索方向方法。在这项工作中,我们将其计算框架简化为“渐渐下降的近似方法”(GDAM),即搜索方向的计算使用负和正常目标和约束梯度的线性组合计算。我们对方法的全球趋同提供了基本的理论保证。这项工作侧重于GDAM的算法和应用。我们提出了调整梯度下降方法共同战略的计算算法。我们用两种工程应用,即形状优化和传感器网络本地化来展示该方法的潜力。在实际实施时,GDAM在解决考虑的大型和具有挑战性的优化问题时,具有很强的竞争力。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
95+阅读 · 2022年8月2日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员