Trajectory prediction in a cluttered environment is key to many important robotics tasks such as autonomous navigation. However, there are an infinite number of possible trajectories to consider. To simplify the space of trajectories under consideration, we utilise homotopy classes to partition the space into countably many mathematically equivalent classes. All members within a class demonstrate identical high-level motion with respect to the environment, i.e., travelling above or below an obstacle. This allows high-level prediction of a trajectory in terms of a sparse label identifying its homotopy class. We therefore present a light-weight learning framework based on variable-order Markov processes to learn and predict homotopy classes and thus high-level agent motion. By informing a Gaussian Mixture Model (GMM) with our homotopy class predictions, we see great improvements in low-level trajectory prediction compared to a naive GMM on a real dataset.
翻译:密闭环境中的轨迹预测对于自主导航等许多重要的机器人任务至关重要。 但是, 还有很多可能的轨迹需要考虑。 为了简化所考虑的轨迹空间, 我们使用同质级将空间分割成许多数学等同的类。 一个类内的所有成员都展示了与环境相同的高层次运动, 即, 旅行在障碍上方或下方。 这样可以高层次预测一个轨迹, 以稀疏标签识别其同质类。 因此, 我们提出了一个轻量级学习框架, 以可变顺序 Markov 进程为基础, 学习和预测同质类, 从而预测高斯混合模型( GMM), 并用我们同质类的预测, 我们看到低级轨迹预测与真实数据集上的天真的 GM 相比有很大改进 。