Navigating mobile robots through environments shared with humans is challenging. From the perspective of the robot, humans are dynamic obstacles that must be avoided. These obstacles make the collision-free space nonconvex, which leads to two distinct passing behaviors per obstacle (passing left or right). For local planners, such as receding-horizon trajectory optimization, each behavior presents a local optimum in which the planner can get stuck. This may result in slow or unsafe motion even when a better plan exists. In this work, we identify trajectories for multiple locally optimal driving behaviors, by considering their topology. This identification is made consistent over successive iterations by propagating the topology information. The most suitable high-level trajectory guides a local optimization-based planner, resulting in fast and safe motion plans. We validate the proposed planner on a mobile robot in simulation and real-world experiments.
翻译:通过与人类共享的环境对移动机器人进行导航具有挑战性。 从机器人的角度来看,人类是必须避免的动态障碍。 这些障碍使得无碰撞空间无孔雀成为无碰撞空间的动态障碍。 这些障碍使得每个障碍( 穿过左或右) 产生两种截然不同的通过行为。 对于地方规划者来说, 比如 递减顺正方体轨道优化, 每一种行为都呈现出一个地方最佳, 使规划者能够卡住。 这可能导致一个更好的计划出现缓慢或不安全的动作 。 在这项工作中, 我们考虑到其地形学, 确定多个本地最佳驾驶行为的轨迹。 通过传播地形学信息, 这个识别与连续的迭代一致 。 最合适的高水平轨迹引导一个基于本地优化的规划师, 导致快速和安全的动作计划 。 我们验证了模拟和现实世界实验中移动机器人上的拟议规划者 。</s>