We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.
翻译:我们首先调查基质函数约合美元(A)美元、马克夫函数美元、合理中间汇率美元、合理美元美元和对称托普利茨矩阵的问题。第一步,我们获得了相对内插错误1美元/美元(A)美元(A)美元(A美元)的新上限。通过在所有内插点上尽可能减少这一上限,我们获得了一个新的、简单的和尖锐的先验的相对内插错误。然后,我们考虑了代表并计算合理中间汇率美元的三种不同方法。提供了理论和数字证据,证明任何这些用于标度参数的方法都能够达到很高的精确度,即使存在有限精确的算术。我们最终调查了美元(A)美元光谱间隔上的有效评估问题,我们发现,如果在安图卢斯和马约之后对美元使用部分分解法,矩阵参数的相对错误就很小。一个重要的作用是,即使是在一个新的阻止精确度标准中,也有一个小的精确度标准,保证了美元自动找到一个精确度。