We propose and study a novel mechanism design setup where each bidder holds two kinds of private information: (1) type variable, which can be misreported; (2) information variable, which the bidder may want to conceal or partially reveal, but importantly, not to misreport. We refer to bidders with such behaviors as strategically reticent bidders. Among others, one direct motivation of our model is the ad auction in which many ad platforms today elicit from each bidder not only their private value per conversion but also their private information about Internet users (e.g., user activities on the advertiser's websites) in order to improve the platform's estimation of conversion rates. We show that in this new setup, it is still possible to design mechanisms that are both Incentive and Information Compatible (IIC). We develop two different black-box transformations, which convert any mechanism $\mathcal{M}$ for classic bidders to a mechanism $\bar{\mathcal{M}}$ for strategically reticent bidders, based on either outcome of expectation or expectation of outcome, respectively. We identify properties of the original mechanism $\mathcal{M}$ under which the transformation leads to IIC mechanisms $\bar{\mathcal{M}}$. Interestingly, as corollaries of these results, we show that running VCG with bidders' expected values maximizes welfare, whereas the mechanism using expected outcome of Myerson's auction maximizes revenue. Finally, we study how regulation on the auctioneer's usage of information can lead to more robust mechanisms.


翻译:我们建议并研究一个新的机制设计设置,让每个投标人拥有两种私人信息:(1) 类型变量,可以错误报告;(2) 信息变量,投标人可能想隐瞒或部分披露,但重要的是,不能错误报告。我们指的是具有战略隐性投标人等行为的投标人。我们模型的一个直接动机是拍卖,在拍卖中,许多广告平台今天不仅从每个投标人的私人转换价值,而且从每个投标人获得关于互联网用户的私人信息(例如广告人网站上的用户活动),以便改进平台对转换率的估计。我们表明,在这一新设置中,仍然有可能设计既鼓励性又信息兼容性(IIC)的机制。我们开发了两种不同的黑箱变换,将典型投标人的任何机制$macal{M} 转换成一个机制$bralcal{M$,根据对结果的预期结果的预期结果或预期结果,我们分别确定了原始机制的属性 $macalalal=M} 和这些预期结果的预期结果。我们用这些变正性机制的预期结果可以显示我们不断增长的结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Core-Elements for Classical Linear Regression
Arxiv
0+阅读 · 2023年3月17日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员