It is a widely observed phenomenon in nonparametric statistics that rate-optimal estimators balance bias and stochastic error. The recent work on overparametrization raises the question whether rate-optimal estimators exist that do not obey this trade-off. In this work we consider pointwise estimation in the Gaussian white noise model with $\beta$-H\"older smooth regression function f. It is shown that an estimator with worst-case bias $\lesssim n^{-\beta/(2\beta+1)}=: \psi_n$ must necessarily also have a worst-case mean absolute deviation that is lower bounded by $\gtrsim \psi_n.$ This proves that any estimator achieving the minimax optimal pointwise estimation rate $\psi_n$ must necessarily balance worst-case bias and worst-case mean absolute deviation. To derive the result, we establish an abstract inequality relating the change of expectation for two probability measures to the mean absolute deviation.
翻译:论文翻译:
题目:偏差和平均绝对误差之间权衡的临界下界
摘要:在非参数统计学中,速率最优估计器平衡偏差和随机误差是一种广泛观察到的现象。最近有关过度参数化的研究引发了一个问题,即是否存在不符合这种权衡的速率最优估计器。在本文中,我们考虑了高斯白噪声模型下的点估计,回归函数 f 的光滑度为 $\beta$-H\"older。证明了一个最坏偏差 $\lesssim n^{-\beta/(2 \beta+1)} =: \psi_n$ 的估计器必须具有一个最坏平均绝对误差的下界 $\gtrsim \psi_n$。这证明了任何达到最小化点估计率 $\psi_n$ 的估计器必须平衡最坏偏差和最坏平均绝对误差。为了得出这一结果,我们建立了一个抽象不等式,将两个概率测度的期望变化与平均绝对误差相关联。