Recent approaches to causal inference have focused on the identification and estimation of \textit{causal effects}, defined as (properties of) the distribution of counterfactual outcomes under hypothetical actions that alter the nodes of a graphical model. In this article we explore an alternative approach using the concept of \textit{causal influence}, defined through operations that alter the information propagated through the edges of a directed acyclic graph. Causal influence may be more useful than causal effects in settings in which interventions on the causal agents are infeasible or of no substantive interest, for example when considering gender, race, or genetics as a causal agent. Furthermore, the "information transfer" interventions proposed allow us to solve a long-standing problem in causal mediation analysis, namely the non-parametric identification of path-specific effects in the presence of treatment-induced mediator-outcome confounding. We propose efficient non-parametric estimators for a covariance version of the proposed causal influence measures, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining $\sqrt{n}$-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data.
翻译:摘要:近年来,因果推断方法已经集中于识别和估计“因果效应”,这被定义为在图形模型中改变节点时,在假设操作下的反事实结果分布的特性。在本文中,我们探讨了另一种基于操作威力的方法,该方法通过改变由一个有向无环图中的边传播的信息来定义“因果影响”。当考虑到性别、种族或基因作为因果因素的情况时,因果影响可能比因果效应更有用,因为这些情况下对因果因素的干预不可行或无实质性兴趣。此外,所提出的“信息传输”干预方法使我们能够解决因治疗诱导的介质结果混淆而导致的路径特定效应的非参数识别问题。我们提出了用于所提出的因果影响度量的协方差版本的高效非参数估计器,采用数据自适应回归结合半参数效率理论,以解决模型偏差而保留$\sqrt{n}$-一致性和渐近正态性。我们使用公开数据在两个例子中说明了我们方法的使用。