This paper proposes a model predictive control (MPC) framework for realizing dynamic walking gaits on the MIT Humanoid. In addition to adapting footstep location and timing online, the proposed method can reason about varying height, contact wrench, torso rotation, kinematic limit and negotiating uneven terrains. Specifically, a linear MPC (LMPC) optimizes for the desired footstep location by linearizing the single rigid body dynamics with respect to the current footstep location. A low-level task-space controller tracks the predicted state and control trajectories from the LMPC to leverage the full-body dynamics. Finally, an adaptive gait frequency scheme is employed to modify the step frequency and enhance the robustness of the walking controller. Both LMPC and task-space control can be efficiently solved as quadratic programs (QP), and thus amenable for real-time applications. Simulation studies where the MIT Humanoid traverses a wave field and recovers from impulsive disturbances validated the proposed approach.
翻译:本文提出了一个模型预测控制框架(MPC),用于在麻省理工学院人类身上实现动态行走步数。除了调整脚步位置和在线时间外,拟议方法还可以解释不同的身高、触摸扳手、躯体旋转、运动限制和谈判不均匀地形。具体地说,线性MPC(LMPC)通过将单体硬体动态与当前脚步位置相对的线性化优化到理想的脚步位置。一个低级别任务空间控制器从LMPC跟踪预测的状态和控制轨迹,以利用全体动态。最后,采用了适应性动作频率计划,以改变步态频率,提高行走控制器的稳健性。LMPC和任务空间控制都可以作为四边程序(QP)得到高效解决,从而可以实时应用。模拟研究,麻省理工学院在波场上进行单体翻转,并从脉冲干扰中恢复,从而验证了拟议的方法。